3.22 \(\int x (d-c^2 d x^2)^3 (a+b \sin ^{-1}(c x)) \, dx\)

Optimal. Leaf size=150 \[ -\frac {d^3 \left (1-c^2 x^2\right )^4 \left (a+b \sin ^{-1}(c x)\right )}{8 c^2}+\frac {b d^3 x \left (1-c^2 x^2\right )^{7/2}}{64 c}+\frac {7 b d^3 x \left (1-c^2 x^2\right )^{5/2}}{384 c}+\frac {35 b d^3 x \left (1-c^2 x^2\right )^{3/2}}{1536 c}+\frac {35 b d^3 x \sqrt {1-c^2 x^2}}{1024 c}+\frac {35 b d^3 \sin ^{-1}(c x)}{1024 c^2} \]

[Out]

35/1536*b*d^3*x*(-c^2*x^2+1)^(3/2)/c+7/384*b*d^3*x*(-c^2*x^2+1)^(5/2)/c+1/64*b*d^3*x*(-c^2*x^2+1)^(7/2)/c+35/1
024*b*d^3*arcsin(c*x)/c^2-1/8*d^3*(-c^2*x^2+1)^4*(a+b*arcsin(c*x))/c^2+35/1024*b*d^3*x*(-c^2*x^2+1)^(1/2)/c

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {4677, 195, 216} \[ -\frac {d^3 \left (1-c^2 x^2\right )^4 \left (a+b \sin ^{-1}(c x)\right )}{8 c^2}+\frac {b d^3 x \left (1-c^2 x^2\right )^{7/2}}{64 c}+\frac {7 b d^3 x \left (1-c^2 x^2\right )^{5/2}}{384 c}+\frac {35 b d^3 x \left (1-c^2 x^2\right )^{3/2}}{1536 c}+\frac {35 b d^3 x \sqrt {1-c^2 x^2}}{1024 c}+\frac {35 b d^3 \sin ^{-1}(c x)}{1024 c^2} \]

Antiderivative was successfully verified.

[In]

Int[x*(d - c^2*d*x^2)^3*(a + b*ArcSin[c*x]),x]

[Out]

(35*b*d^3*x*Sqrt[1 - c^2*x^2])/(1024*c) + (35*b*d^3*x*(1 - c^2*x^2)^(3/2))/(1536*c) + (7*b*d^3*x*(1 - c^2*x^2)
^(5/2))/(384*c) + (b*d^3*x*(1 - c^2*x^2)^(7/2))/(64*c) + (35*b*d^3*ArcSin[c*x])/(1024*c^2) - (d^3*(1 - c^2*x^2
)^4*(a + b*ArcSin[c*x]))/(8*c^2)

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 4677

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)^
(p + 1)*(a + b*ArcSin[c*x])^n)/(2*e*(p + 1)), x] + Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p + 1
)*(1 - c^2*x^2)^FracPart[p]), Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b,
c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int x \left (d-c^2 d x^2\right )^3 \left (a+b \sin ^{-1}(c x)\right ) \, dx &=-\frac {d^3 \left (1-c^2 x^2\right )^4 \left (a+b \sin ^{-1}(c x)\right )}{8 c^2}+\frac {\left (b d^3\right ) \int \left (1-c^2 x^2\right )^{7/2} \, dx}{8 c}\\ &=\frac {b d^3 x \left (1-c^2 x^2\right )^{7/2}}{64 c}-\frac {d^3 \left (1-c^2 x^2\right )^4 \left (a+b \sin ^{-1}(c x)\right )}{8 c^2}+\frac {\left (7 b d^3\right ) \int \left (1-c^2 x^2\right )^{5/2} \, dx}{64 c}\\ &=\frac {7 b d^3 x \left (1-c^2 x^2\right )^{5/2}}{384 c}+\frac {b d^3 x \left (1-c^2 x^2\right )^{7/2}}{64 c}-\frac {d^3 \left (1-c^2 x^2\right )^4 \left (a+b \sin ^{-1}(c x)\right )}{8 c^2}+\frac {\left (35 b d^3\right ) \int \left (1-c^2 x^2\right )^{3/2} \, dx}{384 c}\\ &=\frac {35 b d^3 x \left (1-c^2 x^2\right )^{3/2}}{1536 c}+\frac {7 b d^3 x \left (1-c^2 x^2\right )^{5/2}}{384 c}+\frac {b d^3 x \left (1-c^2 x^2\right )^{7/2}}{64 c}-\frac {d^3 \left (1-c^2 x^2\right )^4 \left (a+b \sin ^{-1}(c x)\right )}{8 c^2}+\frac {\left (35 b d^3\right ) \int \sqrt {1-c^2 x^2} \, dx}{512 c}\\ &=\frac {35 b d^3 x \sqrt {1-c^2 x^2}}{1024 c}+\frac {35 b d^3 x \left (1-c^2 x^2\right )^{3/2}}{1536 c}+\frac {7 b d^3 x \left (1-c^2 x^2\right )^{5/2}}{384 c}+\frac {b d^3 x \left (1-c^2 x^2\right )^{7/2}}{64 c}-\frac {d^3 \left (1-c^2 x^2\right )^4 \left (a+b \sin ^{-1}(c x)\right )}{8 c^2}+\frac {\left (35 b d^3\right ) \int \frac {1}{\sqrt {1-c^2 x^2}} \, dx}{1024 c}\\ &=\frac {35 b d^3 x \sqrt {1-c^2 x^2}}{1024 c}+\frac {35 b d^3 x \left (1-c^2 x^2\right )^{3/2}}{1536 c}+\frac {7 b d^3 x \left (1-c^2 x^2\right )^{5/2}}{384 c}+\frac {b d^3 x \left (1-c^2 x^2\right )^{7/2}}{64 c}+\frac {35 b d^3 \sin ^{-1}(c x)}{1024 c^2}-\frac {d^3 \left (1-c^2 x^2\right )^4 \left (a+b \sin ^{-1}(c x)\right )}{8 c^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 110, normalized size = 0.73 \[ -\frac {d^3 \left (384 a \left (c^2 x^2-1\right )^4+b c x \sqrt {1-c^2 x^2} \left (48 c^6 x^6-200 c^4 x^4+326 c^2 x^2-279\right )+3 b \left (128 c^8 x^8-512 c^6 x^6+768 c^4 x^4-512 c^2 x^2+93\right ) \sin ^{-1}(c x)\right )}{3072 c^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x*(d - c^2*d*x^2)^3*(a + b*ArcSin[c*x]),x]

[Out]

-1/3072*(d^3*(384*a*(-1 + c^2*x^2)^4 + b*c*x*Sqrt[1 - c^2*x^2]*(-279 + 326*c^2*x^2 - 200*c^4*x^4 + 48*c^6*x^6)
 + 3*b*(93 - 512*c^2*x^2 + 768*c^4*x^4 - 512*c^6*x^6 + 128*c^8*x^8)*ArcSin[c*x]))/c^2

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 173, normalized size = 1.15 \[ -\frac {384 \, a c^{8} d^{3} x^{8} - 1536 \, a c^{6} d^{3} x^{6} + 2304 \, a c^{4} d^{3} x^{4} - 1536 \, a c^{2} d^{3} x^{2} + 3 \, {\left (128 \, b c^{8} d^{3} x^{8} - 512 \, b c^{6} d^{3} x^{6} + 768 \, b c^{4} d^{3} x^{4} - 512 \, b c^{2} d^{3} x^{2} + 93 \, b d^{3}\right )} \arcsin \left (c x\right ) + {\left (48 \, b c^{7} d^{3} x^{7} - 200 \, b c^{5} d^{3} x^{5} + 326 \, b c^{3} d^{3} x^{3} - 279 \, b c d^{3} x\right )} \sqrt {-c^{2} x^{2} + 1}}{3072 \, c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*d*x^2+d)^3*(a+b*arcsin(c*x)),x, algorithm="fricas")

[Out]

-1/3072*(384*a*c^8*d^3*x^8 - 1536*a*c^6*d^3*x^6 + 2304*a*c^4*d^3*x^4 - 1536*a*c^2*d^3*x^2 + 3*(128*b*c^8*d^3*x
^8 - 512*b*c^6*d^3*x^6 + 768*b*c^4*d^3*x^4 - 512*b*c^2*d^3*x^2 + 93*b*d^3)*arcsin(c*x) + (48*b*c^7*d^3*x^7 - 2
00*b*c^5*d^3*x^5 + 326*b*c^3*d^3*x^3 - 279*b*c*d^3*x)*sqrt(-c^2*x^2 + 1))/c^2

________________________________________________________________________________________

giac [A]  time = 0.52, size = 202, normalized size = 1.35 \[ -\frac {1}{8} \, a c^{6} d^{3} x^{8} + \frac {1}{2} \, a c^{4} d^{3} x^{6} - \frac {3}{4} \, a c^{2} d^{3} x^{4} - \frac {{\left (c^{2} x^{2} - 1\right )}^{3} \sqrt {-c^{2} x^{2} + 1} b d^{3} x}{64 \, c} - \frac {{\left (c^{2} x^{2} - 1\right )}^{4} b d^{3} \arcsin \left (c x\right )}{8 \, c^{2}} + \frac {7 \, {\left (c^{2} x^{2} - 1\right )}^{2} \sqrt {-c^{2} x^{2} + 1} b d^{3} x}{384 \, c} + \frac {35 \, {\left (-c^{2} x^{2} + 1\right )}^{\frac {3}{2}} b d^{3} x}{1536 \, c} + \frac {35 \, \sqrt {-c^{2} x^{2} + 1} b d^{3} x}{1024 \, c} + \frac {{\left (c^{2} x^{2} - 1\right )} a d^{3}}{2 \, c^{2}} + \frac {35 \, b d^{3} \arcsin \left (c x\right )}{1024 \, c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*d*x^2+d)^3*(a+b*arcsin(c*x)),x, algorithm="giac")

[Out]

-1/8*a*c^6*d^3*x^8 + 1/2*a*c^4*d^3*x^6 - 3/4*a*c^2*d^3*x^4 - 1/64*(c^2*x^2 - 1)^3*sqrt(-c^2*x^2 + 1)*b*d^3*x/c
 - 1/8*(c^2*x^2 - 1)^4*b*d^3*arcsin(c*x)/c^2 + 7/384*(c^2*x^2 - 1)^2*sqrt(-c^2*x^2 + 1)*b*d^3*x/c + 35/1536*(-
c^2*x^2 + 1)^(3/2)*b*d^3*x/c + 35/1024*sqrt(-c^2*x^2 + 1)*b*d^3*x/c + 1/2*(c^2*x^2 - 1)*a*d^3/c^2 + 35/1024*b*
d^3*arcsin(c*x)/c^2

________________________________________________________________________________________

maple [A]  time = 0.01, size = 182, normalized size = 1.21 \[ \frac {-d^{3} a \left (\frac {1}{8} c^{8} x^{8}-\frac {1}{2} c^{6} x^{6}+\frac {3}{4} c^{4} x^{4}-\frac {1}{2} c^{2} x^{2}\right )-d^{3} b \left (\frac {\arcsin \left (c x \right ) c^{8} x^{8}}{8}-\frac {\arcsin \left (c x \right ) c^{6} x^{6}}{2}+\frac {3 c^{4} x^{4} \arcsin \left (c x \right )}{4}-\frac {c^{2} x^{2} \arcsin \left (c x \right )}{2}+\frac {c^{7} x^{7} \sqrt {-c^{2} x^{2}+1}}{64}-\frac {25 c^{5} x^{5} \sqrt {-c^{2} x^{2}+1}}{384}+\frac {163 c^{3} x^{3} \sqrt {-c^{2} x^{2}+1}}{1536}-\frac {93 c x \sqrt {-c^{2} x^{2}+1}}{1024}+\frac {93 \arcsin \left (c x \right )}{1024}\right )}{c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(-c^2*d*x^2+d)^3*(a+b*arcsin(c*x)),x)

[Out]

1/c^2*(-d^3*a*(1/8*c^8*x^8-1/2*c^6*x^6+3/4*c^4*x^4-1/2*c^2*x^2)-d^3*b*(1/8*arcsin(c*x)*c^8*x^8-1/2*arcsin(c*x)
*c^6*x^6+3/4*c^4*x^4*arcsin(c*x)-1/2*c^2*x^2*arcsin(c*x)+1/64*c^7*x^7*(-c^2*x^2+1)^(1/2)-25/384*c^5*x^5*(-c^2*
x^2+1)^(1/2)+163/1536*c^3*x^3*(-c^2*x^2+1)^(1/2)-93/1024*c*x*(-c^2*x^2+1)^(1/2)+93/1024*arcsin(c*x)))

________________________________________________________________________________________

maxima [B]  time = 0.47, size = 358, normalized size = 2.39 \[ -\frac {1}{8} \, a c^{6} d^{3} x^{8} + \frac {1}{2} \, a c^{4} d^{3} x^{6} - \frac {1}{3072} \, {\left (384 \, x^{8} \arcsin \left (c x\right ) + {\left (\frac {48 \, \sqrt {-c^{2} x^{2} + 1} x^{7}}{c^{2}} + \frac {56 \, \sqrt {-c^{2} x^{2} + 1} x^{5}}{c^{4}} + \frac {70 \, \sqrt {-c^{2} x^{2} + 1} x^{3}}{c^{6}} + \frac {105 \, \sqrt {-c^{2} x^{2} + 1} x}{c^{8}} - \frac {105 \, \arcsin \left (c x\right )}{c^{9}}\right )} c\right )} b c^{6} d^{3} - \frac {3}{4} \, a c^{2} d^{3} x^{4} + \frac {1}{96} \, {\left (48 \, x^{6} \arcsin \left (c x\right ) + {\left (\frac {8 \, \sqrt {-c^{2} x^{2} + 1} x^{5}}{c^{2}} + \frac {10 \, \sqrt {-c^{2} x^{2} + 1} x^{3}}{c^{4}} + \frac {15 \, \sqrt {-c^{2} x^{2} + 1} x}{c^{6}} - \frac {15 \, \arcsin \left (c x\right )}{c^{7}}\right )} c\right )} b c^{4} d^{3} - \frac {3}{32} \, {\left (8 \, x^{4} \arcsin \left (c x\right ) + {\left (\frac {2 \, \sqrt {-c^{2} x^{2} + 1} x^{3}}{c^{2}} + \frac {3 \, \sqrt {-c^{2} x^{2} + 1} x}{c^{4}} - \frac {3 \, \arcsin \left (c x\right )}{c^{5}}\right )} c\right )} b c^{2} d^{3} + \frac {1}{2} \, a d^{3} x^{2} + \frac {1}{4} \, {\left (2 \, x^{2} \arcsin \left (c x\right ) + c {\left (\frac {\sqrt {-c^{2} x^{2} + 1} x}{c^{2}} - \frac {\arcsin \left (c x\right )}{c^{3}}\right )}\right )} b d^{3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*d*x^2+d)^3*(a+b*arcsin(c*x)),x, algorithm="maxima")

[Out]

-1/8*a*c^6*d^3*x^8 + 1/2*a*c^4*d^3*x^6 - 1/3072*(384*x^8*arcsin(c*x) + (48*sqrt(-c^2*x^2 + 1)*x^7/c^2 + 56*sqr
t(-c^2*x^2 + 1)*x^5/c^4 + 70*sqrt(-c^2*x^2 + 1)*x^3/c^6 + 105*sqrt(-c^2*x^2 + 1)*x/c^8 - 105*arcsin(c*x)/c^9)*
c)*b*c^6*d^3 - 3/4*a*c^2*d^3*x^4 + 1/96*(48*x^6*arcsin(c*x) + (8*sqrt(-c^2*x^2 + 1)*x^5/c^2 + 10*sqrt(-c^2*x^2
 + 1)*x^3/c^4 + 15*sqrt(-c^2*x^2 + 1)*x/c^6 - 15*arcsin(c*x)/c^7)*c)*b*c^4*d^3 - 3/32*(8*x^4*arcsin(c*x) + (2*
sqrt(-c^2*x^2 + 1)*x^3/c^2 + 3*sqrt(-c^2*x^2 + 1)*x/c^4 - 3*arcsin(c*x)/c^5)*c)*b*c^2*d^3 + 1/2*a*d^3*x^2 + 1/
4*(2*x^2*arcsin(c*x) + c*(sqrt(-c^2*x^2 + 1)*x/c^2 - arcsin(c*x)/c^3))*b*d^3

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int x\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,{\left (d-c^2\,d\,x^2\right )}^3 \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + b*asin(c*x))*(d - c^2*d*x^2)^3,x)

[Out]

int(x*(a + b*asin(c*x))*(d - c^2*d*x^2)^3, x)

________________________________________________________________________________________

sympy [A]  time = 10.89, size = 253, normalized size = 1.69 \[ \begin {cases} - \frac {a c^{6} d^{3} x^{8}}{8} + \frac {a c^{4} d^{3} x^{6}}{2} - \frac {3 a c^{2} d^{3} x^{4}}{4} + \frac {a d^{3} x^{2}}{2} - \frac {b c^{6} d^{3} x^{8} \operatorname {asin}{\left (c x \right )}}{8} - \frac {b c^{5} d^{3} x^{7} \sqrt {- c^{2} x^{2} + 1}}{64} + \frac {b c^{4} d^{3} x^{6} \operatorname {asin}{\left (c x \right )}}{2} + \frac {25 b c^{3} d^{3} x^{5} \sqrt {- c^{2} x^{2} + 1}}{384} - \frac {3 b c^{2} d^{3} x^{4} \operatorname {asin}{\left (c x \right )}}{4} - \frac {163 b c d^{3} x^{3} \sqrt {- c^{2} x^{2} + 1}}{1536} + \frac {b d^{3} x^{2} \operatorname {asin}{\left (c x \right )}}{2} + \frac {93 b d^{3} x \sqrt {- c^{2} x^{2} + 1}}{1024 c} - \frac {93 b d^{3} \operatorname {asin}{\left (c x \right )}}{1024 c^{2}} & \text {for}\: c \neq 0 \\\frac {a d^{3} x^{2}}{2} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c**2*d*x**2+d)**3*(a+b*asin(c*x)),x)

[Out]

Piecewise((-a*c**6*d**3*x**8/8 + a*c**4*d**3*x**6/2 - 3*a*c**2*d**3*x**4/4 + a*d**3*x**2/2 - b*c**6*d**3*x**8*
asin(c*x)/8 - b*c**5*d**3*x**7*sqrt(-c**2*x**2 + 1)/64 + b*c**4*d**3*x**6*asin(c*x)/2 + 25*b*c**3*d**3*x**5*sq
rt(-c**2*x**2 + 1)/384 - 3*b*c**2*d**3*x**4*asin(c*x)/4 - 163*b*c*d**3*x**3*sqrt(-c**2*x**2 + 1)/1536 + b*d**3
*x**2*asin(c*x)/2 + 93*b*d**3*x*sqrt(-c**2*x**2 + 1)/(1024*c) - 93*b*d**3*asin(c*x)/(1024*c**2), Ne(c, 0)), (a
*d**3*x**2/2, True))

________________________________________________________________________________________